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Abstract—Motivated by the need to judiciously allocate scarce
sensing resources, and account for fusing information from
multi-modal sensors, we develop a solutions methodology for
maximizing the overall quality of information obtained subject to
constraints on the energy utilized by a sensor network that is in-
volved in the task of tracking multiple targets. Our methodology
is based on integer programming, and explicitly allows for general
fusion functions. We use an iterative Lagrangian relaxation
technique to solve this problem where each iteration step involves
solving for a Maximum Weight Independent Set (MWIS) of
an appropriately constructed graph (which can be obtained in
polynomial time for this problem). We apply our methodology to
numerically study the problem of tracking targets moving over a
period of time through a non-homogeneous, energy-constrained
sensor field. In these applications, we study the QoI/energy trade-
offs for various modes of operation including the period for
measurement updates.

I. INTRODUCTION

In a wireless sensor network, sensors with multiple

modalities can be used to estimate a variety of features

from objects of interest. For example, in target tracking, a

radar can be employed to estimate the location and velocity

of a target, while an imaging sensor can be employed to

estimate its physical characteristics. Furthermore, fusing the

information collected from the different modalities provides

us with a more complete and accurate description providing

a higher Quality of Information (QoI) [1], such as reducing

the uncertainties regarding the tracks of the targets sensed.

Sensor networks can potentially perform multiple sensing

and processing tasks at will. However, due to their limited

bandwidth, energy, and computing resources, it becomes

imperative to design and operate them in a way that is

mindful of these limitations by judiciously allocating their

resources to the tasks at hand.

In this paper, we are interested in a sensor network

tracking multiple targets simultaneously. Specifically, we

focus on ensuring that the QoI that is obtained by, say,
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fusing information from multiple sensors can be represented

as a general function of the QoIs obtained from individual

sensors. This is of particular importance in heterogeneous,

and multi-modal sensor networks. For example, the QoI

obtained by fusing information from an imagery sensor (e.g.,

camera) and an acoustic sensor may not be a sum (or even

a weighted sum) of the QoIs obtained by the individual

sensors. Further, we take into account energy constraints from

non-homogeneous sensors, where, for example, a camera

may require more energy than an acoustic sensor.

There is extensive literature related to assignments in target-

tracking scenarios based on integer programming formula-

tions. In [2], Joshi et al., study how to select k out of m total

sensors such that the error variance of the combined measure-

ments of the k sensors is minimized while tracking a single

target. Using convex relaxation techniques, they develop a

solution for the case that both k and m are large. The proposed

solution has limited application when multiple targets are

present in the system. In [3] and [4], similar problems are stud-

ied for extended Kalman filters. The goal in [3] is to choose

a group of sensors such that the total energy is minimized

subject to constraints on the error variance, and that in [4] is to

choose k out of m sensors in order to minimize the RMS posi-

tion error. These studies have good scaling properties as k and

m become large. However, in practical scenarios, k can be a

small number. For instance, our numerical result in Figure 7(a)

shows that we get diminishing returns in QoI as the number of

sensors whose information is fused increases. Similar results

have also been observed in [3]. Moreover, the sensors whose

information are fused will typically be located closer to the

target than other sensors. Hence, it is usually not necessary

to solve the problem for a high value of k or m. Also, these

studies are limited to specific estimation techniques (such as

linear or extended Kalman filters). By relaxing the requirement

that k and m are large, in this work, we develop a methodology

that allows for general estimation and fusion techniques.

In [5], it is shown that the multi-target tracking problem is

NP-Hard even when information can be fused from only two

sensors; it also provides approximation algorithms for the

problem by observing a relationship to a bin-packing problem.

This study does not consider sensor resource limitations.

In [6], this problem is studied under constraints on the
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reward required for each target, and a solution is obtained by

modeling the problem as a semi-matching problem. In both

these studies, a sensor can track only one target, but a target

can be tracked by multiple sensors. Also, they assume that

the QoI (for fusion) obtained from multiple sensors can be

expressed as the sum of the QoIs obtained from individual

sensors. Therefore, while this work takes some constraints on

the quality into account, it does not capture general fusion

metrics for QoI as considered in this paper.
We show that without energy constraints, our problem maps

to a Maximum Weight Independent Set (MWIS) problem.

Though, finding an MWIS in a general graph is NP-Hard,

we show that we can find such a set in polynomial time

for this problem because of the structure of the graph in

which it is obtained. When energy constraints are present, a

particularly challenging problem in integer programming, we

use Lagrange multipliers to formulate the dual problem and

provide an iterative solution, which again involves an MWIS.
MWIS techniques have been used for associating sensor

measurements to targets in [7], [8]. This is a fundamentally dif-

ferent class of assignment problems than what we consider in

our framework. Moreover, these studies do not consider oper-

ational constraints such as energy. Hence, we are dealing with

graphs whose structure is different from those in these studies.
Lagrangian techniques have been extensively studied for

continuous optimization problems. However, due to duality

gaps, they have limited applications in integer optimization.

Therefore, it is important to understand where these techniques

can be applied in this regard. In a generalized assignment

problem (GAP) [9] with linear budget constraints, using a

Lagrange multiplier for the budget constraint results in a dual

problem which can be solved using iterative techniques such

as the primal-dual sub-gradient algorithm. This work provides

a comprehensive tutorial of this approach. While this approach

does not always guarantee an optimal solution for the primal

problem, a number of studies in integer programming theory

derive an optimal primal solution leveraging Lagrangian

techniques [10], [11]. We discuss these issues carefully in

Sections IV and V.
Considering the operation of a system over slotted time, our

main contributions in this paper are:

• the development of a general integer programming

methodology for allocating a constrained pool of sensors

to one or more targets in each slot, that allows for a

system-level QoI function for fusing information from

multiple sensors as a general function of the QoIs from

individual sensors for each target, and energy constraints;

• an iterative solution for the integer programming problem

using a primal-dual gradient projection algorithm, which

involves solving an MWIS problem at each iteration in

an appropriately constructed graph;

• an analysis of the convergence properties, and duality

gaps of the algorithm; and

• an extensive performance, simulation, and trade-off

evaluation while tuning system parameters for improving

the Quality of Information (QoI) for the multi-target

Figure 1. Model

tracking problem.

The rest of the paper is organized as follows. In Section II,

we describe the system model. In Section III, we put forth

our methodology for assigning sensors to multiple targets. In

Section IV, we develop an iterative algorithm to solve the

problems formulated in Section III, and discuss analytical re-

sults on optimality and convergence. In Section V, we quantify

our analytical results through extensive numerical evaluations.

We finish in Section VI with some concluding remarks.

II. SYSTEM MODEL

We consider a sensor network comprising a set of sensors

S of size N and a set of targets T of size M . We assume

that the network has detected and associated measurements to

targets using appropriate techniques such as Joint Probabilis-

tic Data Association (JPDA), clustering algorithms, etc. We

consider time-slotted operation with sensors tracking targets

during each sampling instant (or sampling period). Based on

predicted QoI in the next sampling slot, a group of sensors

is assigned to track each target to maximize the overall

QoI obtained in that sampling slot while satisfying energy

constraints. The QoI, for instance, can be the predicted Fisher

information obtained from a Kalman filter. An example of our

system model is provided in Figure 1. The black sensors track

multiple targets during the same sampling instant, the blue

sensors track only one target, and the red sensor tracks no

targets during that sampling instant.

III. PROBLEM MODEL

In this section, we formulate a model (referred to as Target-
Oriented Model (TOM)) for the problem at hand. In this model,

we focus on sensor assignments for the next sampling slot. By

updating QoIs and solving this problem for each future slot,

we can track multiple targets over a time horizon. Analogous

to this model, we can also have a Sensor-Oriented Model;
details can be found in [12].

A. Target-Oriented Model (TOM)

According to this model, a target is tracked by a group of

sensors. Specifically, for each target i ∈ T , i = 1, . . . ,M , we

associate a collection of sets Ki that represents the possible

groups of sensors that can be assigned simultaneously to

that target. Let Ki = {Ki
1,K

i
2, . . . ,K

i
mi

} where for each

201



l ∈ {1, . . . ,mi}, Ki
l ⊆ {0} ∪ S. The “0” element represents

the case that target i is not assigned to any sensor (during

a slot). Clearly, the “0” element can be a member of only

one of the sets in Ki and that set must be a singleton. The

introduction of the {0} set in Ki allows us to explicitly model

a (potential) penalty for not assigning target i to any sensor.

A penalty is relevant when the QoI is (say) the error variance

of a target, and the goal is to minimize the sum of the error

variances. We use this in later sections.

For each i ∈ T , and j ∈ Ki, we define xij to be the

assignment indicator variable:

xij =

{
1, if target i is assigned to sensor group j; and

0, otherwise.
(1)

Let qij represent the QoI obtained from target i when xij = 1
holds true, i.e., when target i is tracked by all the sensors

in the set j ∈ Ki (and only these sensors). Likewise, let eij
denote the energy demand for tracking target i when xij = 1
holds true, and let e be the total energy constraint on the

system. Now the optimization problem ΠT for TOM can be

formulated as follows:

Problem ΠT: For xij ∈ {0, 1}, maximize∑
i∈T

∑
j∈Ki

qijxij , s.t. (a)
∑
j∈Ki

xij = 1 for each i ∈ T ;

and (b)
∑
i∈T

∑
j∈Ki

eijxij ≤ e. (2)

The objective of ΠT is to maximize the sum of the QoIs

obtained by all the targets in the system. Constraint (a) is a

matching constraint and it states that each target i must be

assigned to exactly one of the sets of sensors in Ki, which by

construction contains all permissible alternatives for assigning

target i to the sensors (even the {0} set). Constraint (b) is

the energy constraint.

Note that that qij , i.e., the QoI obtained when sensors in

the set j ∈ Ki track target i, can be an arbitrary function of

the QoIs obtained from each sensor separately. This implies

that TOM can be used even when, say, the QoI attained by

fusing information from multiple sensors is not restricted to

be the sum of the individual QoIs as was the case in [5], [6].

Further, note that the models developed in [2], [3], [6] are all

special cases of the model developed in this section.

B. Extensions to Problem ΠT

1. A sensor can track only one target but a target can be
tracked by multiple sensors

We can model this constrained problem by including the

following linear constraint in problem ΠT :

for each sensor k ∈ S,
∑
i∈T

∑
{j∈Ki:k∈j}

xij ≤ 1 (3)

This constraint implies that a sensor k can be assigned to

track at most one target i ∈ T . This is because for each set j
containing the sensor k, and for each target i, at most one of

the xijs can be one. Our numerical results study this extension.

2. Minimize the total energy subject to QoI constraint q
This problem is the dual problem of ΠT . The solution to

this problem can be found by combining a binary search to

the solution of ΠT [12].

3. Guarantee that certain targets achieve at least a given
minimum QoI

Suppose that target i requires a QoI of at least q. The

solution to this problem can be obtained by adding the

following constraint to ΠT : for each j ∈ Ki, if qij < q, set

xij = 0.

4. Guarantee that certain sensors satisfy a given maximum
energy

Suppose that sensor k can expend at most ek units of energy.

This can be modeled by the following linear constraint:∑
i∈T

∑
{j∈Ki:k∈j}

xije
(k)
ij ≤ ek, (4)

where e
(k)
ij is an arbitrary function of eij representing the

energy contribution of sensor k in the set j of sensors. Note

that eij represents the energy required by all the sensors in the

set j to track the target i, hence eij =
∑

l∈j e
(l)
ij . This problem

can be solved in the same manner (using a Lagrange multiplier

for this constraint) as ΠT is solved in the next section.

IV. SOLUTIONS METHODOLOGY

In this section, we develop iterative algorithms for problem

ΠT , and discuss optimality and convergence results. We first

find the optimal solution for the problem without energy

constraints. Then, we use this to find an optimal solution for

the problem with energy constraints.

A. Without Energy Constraints

We show that an optimal solution can be obtained by finding

an MWIS. An independent set in a graph is a set of nodes no

two of which have an edge between them. A Maximum Weight

Independent Set (MWIS) is an independent set with maximum

total weight of nodes. Finding an MWIS in a general graph

is NP-Hard–it follows from the fact that finding a maximum

clique in a general graph is NP-Hard [13]. Nonetheless, in our

problem, due to the structure of the graph involved, it is not

NP-Hard to find such a set.

Theorem 4.1: Optimal solutions to problem ΠT (without

energy constraints) can be obtained by finding an MWIS in

the graph G constructed as follows:

• for each variable xij , create a node (i, j) in G;

• for each node (i, j) in G, associate a weight qij ; and

• for every two nodes (i1, j1) and (i2, j2), create an edge

between them if and only if i1 = i2.

Proof: From the above construction, two nodes (i1, j1)
and (i2, j2) in G can both be in an independent set of G if

and only if i1 �= i2. This implies that the variables xi1j1 and

xi2j2 can both equal 1 simultaneously if and only if i1 �= i2.

Therefore, for TOM, an independent set cannot consist of any

two nodes in G that correspond to the same target.

Since by finding an MWIS, we maximize∑
i∈T

∑
j∈Ki

qijxij while satisfying the constraints, this

202



����� ����� ������������

����� ����� ������������
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cliques
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(b) Graph H: A sensor can track only
one target

Figure 2. Graph construction for ΠT

MWIS provides an optimal solution to problem ΠT (without

energy constraints).

Corollary 4.1: When a sensor can track only one target (in

a given sampling slot), an optimal solution to TOM (without

energy constraints) can be obtained by finding an MWIS in

the graph H, where H is constructed as follows:

• construct G as in Theorem 4.1; and

• for any two nodes (i1, j1) and (i2, j2) where {0} /∈ j1
and {0} /∈ j2, create an edge between them if and only

if j1 ∩ j2 �= ∅.

Proof: In the case where a sensor can track only one

target, we have all the original constraints in problem ΠT

(apart from the energy constraint), and the additional constraint

given in (3). G represents all the constraints except the

constraint in (3). Since for any node (im, jm), jm represents

the set of sensors tracking target im, if j1 ∩ j2 �= ∅, one

of the sensors in j1 and j2 is tracking both targets i1 and

i2. Therefore, we create an edge between these two nodes.

Further, we do not create an edge in G if j1 and j2 do not

have any common sensor. Therefore, an independent set in H
will satisfy the required constraints, and hence an MWIS in H
will provide an optimal solution for this case in the absence

of energy constraints.

We now show that an MWIS in G can be found in

polynomial time.

Theorem 4.2: G is a union of disjoint cliques, and hence an

MWIS in G can be found in polynomial time.

Proof: By the construction of G in Theorem 4.1, two

nodes (i1, j1) and (i2, j2) will have an edge between them

if and only if i1 = i2. Hence, there is no edge between these

nodes when i1 �= i2. Therefore, the set of nodes having the

same first label i1 form a clique, and, thus, G is a union of

cliques. Since there are no edges between node from different

cliques, G is a union of disjoint cliques.

Hence, an MWIS in G is obtained by simply selecting the

node in each clique with maximum weight. This can clearly

be obtained in polynomial time.

Figure 2(a) illustrates the result in Theorem 4.2 for the case

of two sensors and two targets. The node label (1, {1, 2})
means that target 1 is tracked by both sensors 1 and 2. It can

be easily seen that G is a disjoint union of cliques.

In Figure 2(b), we provide an example of the special case

where a sensor can track only one target. The graph H is not

a disjoint union of cliques. For instance, we can see that there

is an edge between (1, {1, 2}) and (2, {1}) since if target 1

is tracked by both sensors 1 and 2, then target 2 cannot be

tracked by sensor 1. When the number of targets is a constant,

the complexity of finding an MWIS in this graph is polynomial

in the number of nodes in the graph. The reason is as follows:

Since we can only select one group of sensors for each target,

if there are t targets in the system, and n nodes in this graph,

the complexity of finding an MWIS in this graph is O((n/t)t).
Note that n/t = |K|.
B. With Energy Constraints

We now take the energy constraints into account as well. As

explained in the extensions in Section III, it is straightforward

to account for other energy constraints such as per-sensor

energy constraints. Associating a Lagrange multiplier λ for

the energy constraint, the dual objective function for ΠT can

be obtained as follows, where xij ∈ {0, 1}:

D(λ) = max
(2.a)

{∑
i∈T

∑
j∈Ki

(qij − λeij)xij

}
+ λe, (5)

where the (2.a) qualifier for the “max” operator refers to

constraint (a) in the maximization formulation for ΠT in (2).

From (5), it can be immediately seen that for a given λ, D(λ)
can be obtained by finding an MWIS in G where the weight

of each node (i, j) in G (see Theorem 4.1) is modified from

qij to (qij − λeij).
The dual optimization problem of ΠT is given by

min
λ≥0

D(λ). (6)

We solve this problem using a gradient projection algorithm.
Algorithm 1: Initialize λ = 0, and:

1) At iteration k, compute �x(k) = {x(k)
ij : i ∈ T, j ∈ Ki}

as

�x(k) = argmax
(2.a)

{∑
i∈T

∑
j∈Ki

(qij − λ(k−1)eij)xij

}
,

where xij ∈ {0, 1}. This can be computed by finding

an MWIS in G with the weights modified as described

before.

2) At iteration k, update λ as follows.

λ(k) =
[
λ(k−1) + α(k)(

∑
i∈T

∑
j∈Ki

eijx
(k)
ij − e)

]+
, (7)

where [y]+ = max{0, y}. The coefficient α(k) is a

positive step-size used at iteration k and it can be chosen

according to Theorem 4.3 later on. One of the possible

choices of α(k) is 1/k.

3) Stop when λ(k) − λ(k−1) < γ, where γ is a threshold.

It follows from step 2 that λ increases when the energy

required by the system is greater than e, and it decreases

when the energy required by the system is less than e. Hence,

a binary search algorithm can be used instead for updating

λ as well. This algorithm results in much faster convergence

than the gradient projection algorithm. However, the gradient

projection algorithm is very useful when multiple Lagrange

multipliers need to be updated simultaneously (corresponding

to multiple constraints).
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C. Computational Complexity

We consider the binary search algorithm for updating λ. The

number of iterations required by the binary search algorithm

is O(	log2(d/γ)
), where γ is the threshold in Algorithm 1,

and d = emax is the maximum energy that the system can

utilize, i.e., the system uses all the sensors available.

(i) A sensor can track multiple targets: The complexity of

finding an MWIS in this case is simply the number of nodes

in the graph G. Assume that there are s sensors, t targets, and

that at most k of the sensors can be combined for a target,

e.g., information from at most k out of s sensors can be fused

for sensing a target. Then the number of nodes in G for TOM

is at most t×(
1+s+

(
s
2

)
+ . . .+

(
s
k

)) ∼ O(tsk). Further, since

this computation needs to be performed at most 	log2(d/γ)

times (for binary search), the overall complexity is given by

O(tsk	log2(d/γ)
).
(ii) A sensor can track only one target: In this case, we

use the result from the end of Section IV-A and the fact that

for case (i), |K| ∼ sk, to obtain the complexity of finding

a MWIS as O(skt). Therefore, the overall complexity with

energy constraints is O(skt	log2(d/γ)
).
Remark: As we mentioned earlier, this work is motivated by

the fact that s, t and k are small numbers in practice. While

our algorithms have a polynomial time complexity, they may

not scale well as s, t, or k become large. This is a trade-off

that we obtain for allowing general fusion functions.

D. Optimality and Convergence

If the xijs were relaxed to take continuous values in [0, 1],
then for diminishing step-sizes (α(k) → 0,

∑∞
k=1 α

(k) → ∞),

as k → ∞, Algorithm 1 would converge to an optimal solution

for both the primal and dual problems, and there would be

no duality gap [14]. However, since the xijs are indicator

({0-1}-valued) variables, we would need post-processing to

obtain valid values for the xijs. It is, in general, very hard to

analytically compare this post-processed integer solution with

the optimal integer programming solution.

Here, we do not relax the integer variables xij . In this

case, while the dual program is a linear optimization program

for λ, the primal program is an integer optimization program.

Therefore, there could potentially exist a duality gap. The

following result shows the convergence of λ.

Theorem 4.3: For any ε > 0, for diminishing step-sizes

(α(k) → 0,
∑∞

k=1 α
(k) → ∞), ∃B > 0 such that ∀k > B,

|λ(k) − λ∗| < ε, where λ∗ is the optimal solution to the dual

problem.

The proof follows from [15].

While λ converges to the optimal solution of the dual prob-

lem, we cannot guarantee that the primal objective function

converges. Suppose that the primal objective function does not

converge. When the algorithm stops, we will obtain two values

of λ, λ1 and λ2, where, say, λ1 < λ2, and λ2−λ1 < γ. λ1 will

result in an infeasible solution to the primal problem, while λ2

will result in a feasible solution to the primal problem. This has

been proved in [10], [11] and we also observed it during our

numerical evaluations in Section V. One way to find the primal

optimal solution is to perform a branch and bound starting with

these solutions that we obtained from Algorithm 1. Recently, it

was shown in [10] that given a ρ-approximation algorithm for

Step 1 of Algorithm 1, a ( ρ
ρ+1 − ε)-approximation algorithm

for the primal problem can be obtained using the feasible

and infeasible solutions obtained either by binary search or

by Algorithm 1. In our case, since the MWIS problem can

be solved in polynomial time because of the graph structure,

using Algorithm 1 and the algorithm provided in [10], we can

obtain a (0.50− ε)-approximation for our primal problem.

V. NUMERICAL RESULTS

We now investigate a multi-target tracking problem with

Kalman filters and study the performance of the QoI obtained;

we use the variance of the track estimate as the QoI. As we

mentioned before, different types of filters, fusion techniques,

QoI metrics can be employed. We use Kalman filters here

for the purpose of illustrating how our methodology can be

applied. Even with these basic filters, we obtain insightful

results on how QoI behaves with energy.

A. Setup

We consider a system with M = 3 targets and N = 9
sensors, three of which are high energy (h) sensors and six are

low energy (l) ones. A sensor can track only one target during

a sampling instant, but a target can be tracked by multiple

sensors. Information is required from two low energy sensors,

or one high energy sensor, or a combination of one high energy

sensor and two low energy sensors in order to estimate the

location of a target. The mobility models for the targets are

given by the following equations (we use a scalar formulation

for ease of presentation):

xi(k + 1) = aixi(k) + vi(k), i ∈ {1, 2, 3}, (8)

where xi(k) is the location of target i at slot k and vi(k) is

AWGN with distribution N (0, Qi). The measurement model

for each of the high energy and low energy sensors is (we

drop the sensor index for brevity):

zei (k) = xi(k) + yei (k), e ∈ {h, l}, and i ∈ {1, 2, 3}, (9)

where yei (k) is AWGN with distribution N (0, Re
i ). We

assume that Re
i , e ∈ {h, l}, depends on the distance between

the sensor and the target. Specifically, the measurement error

variance is 4 for a high energy sensor and 9 for a low energy

sensor, if the distance between the sensor and the target is

less than 10 units. The measurement error variance increases

by 1 if the distance is between 10 and 20 units, and increases

by 2 if the distance is more than 20 units.

The locations of the sensors and the initial locations of the

targets are random. Table I provides the numerical values of

the parameters in the setup. The parameters eh, el, ell, and

ehll represent the energy levels used by a high energy sensor

only, a low energy sensor only, a combination of two low

energy sensors, and a combination of one high energy and

two low energy sensors, respectively.
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Parameter Value Parameter Value
a1 1.5 Q1 4
a2 1.2 Q2 6
a3 1.1 Q3 4

Rh 4 eh 2

Rl 9 el 1
ehll 6 ell 2.4

Table I
SIMULATION PARAMETERS

Let P p
i (k) represent the one-step predicted variance for

target i at slot k, and P c
i (k) represent the corrected variance

after the measurement for target i at slot k is received.

The variance update of the Kalman filters are given by the

following equations, k = 1, 2, . . . (i = 1, 2, 3):

P p
i (k) = a2iP

c
i (k − 1) +Qi, where P c

i (0) = 0, (10)

P c
i (k) =

P p
i (k) ·Re

i

P p
i (k) +Re

i

⇔ 1

P c
i (k)

=
1

P p
i (k)

+
1

Re
i

, e ∈ {h, l}.
(11)

Thus, when “knowledge” is added, which in this case is

represented by a newly arriving measurement with variance

Re
i , the tracking variances before and after incorporating the

new knowledge exhibit a harmonic relationship; see also [16].

We adopt a similar relationship for the QoI obtained when

fusing across track estimates from different sensors as well.

Alternative fusion expressions could also be used without

altering the applicability of our methodology.

With this setup, and with our interest in minimizing the

sum the QoI (variance) over all the targets, we now study a

number of performance metrics such as the convergence of

our algorithms, the performance of the overall variance with

energy, and over a time horizon.

B. Algorithm Convergence

We start with an experimental study of the convergence for

the algorithms developed in Section IV. Note that while the

Lagrange multiplier always converges, the primal objective

function may not converge. Nonetheless, it would eventually

remain constrained to within ε from the optimal solution for

some ε > 0. We study two cases, one in which the primal

objective function converges, and one where it does not.

We first consider a total energy constraint e = 10.8. For

each iteration step, Figure 3 shows the values of the Lagrange

multiplier λ, and the value of the primal objective function

QoI (variance).
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Figure 3. Instance where the primal objective function converges

We initialize λ = 0. We use Algorithm 1 for this experiment,

and we choose the step-size at iteration k to be α(k) = 0.05/k
and γ is set to 10−4. When λ = 0, there are no constraints on

the energy, and hence the network uses the maximum possible

energy available (which equals 18, as can be easily derived).

Since this is greater than the energy constraint e = 10.8, λ
increases. As λ keeps increasing, the network starts using less

energy. Ultimately, it converges to the energy constraint e =
10.8. Since the QoI is the variance here, when the system uses

higher total energy we get a lower variance. These can be seen

in Figure 3. We see that both the QoI and λ converge within

5 iterations.

We now consider a total energy constraint e = 10. We run

the same algorithm as before. We observe from Figure 4 that

while λ still converges, the primal objective function does not

converge. One reason that this happens is because there is

no optimal solution that exactly uses the entire permissible

energy e = 10 while there are solutions that use a total energy

of 7.2 (a permissible solution) and 10.8 (an impermissible

solution), respectively. Therefore, we can use the two values

of λ corresponding to these energy levels, and determine

the optimal solution using other techniques as discussed in

Section IV. In this case, it turns out that the optimal solution

uses a total energy of 7.2, which corresponds to using all six

low energy sensors but no high energy sensor. Note that the

behavior of the solution “stabilizes” within 5 iterations.
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Figure 4. Instance where the primal objective function does not converge

C. QoI over a Time Horizon

We now study how the QoI behaves over a time horizon

for different (average) energy constraint levels and different

sampling periods. Note that energy can be saved by a sensor

network not only by reducing the total energy used for taking

a measurement but also by varying the time period over which

a measurement is taken. The targets move according to their

mobility models described in the setup. When we do not make

a measurement during a time slot (due to the sampling period

chosen), we use the predicted variance of the Kalman filter as

the QoI. When we make a measurement, we use the corrected

variance of the Kalman filter to represent the QoI.

Figure 5 shows the performance of the system over a time

horizon for four different values of energy, and three different

sampling periods. Note that the energy here is the average

energy used over the time horizon. When the sampling period

is i and the average energy used is eavg, then the energy

used during the sampling slot is i · eavg , and zero during
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Figure 5. QoI over a time horizon
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Figure 6. Various QoI performance results

all other slots. From the plots in the figure, we can observe

that as the energy increases, the overall variance decreases

and hence we get a better QoI. When the sampling period

is one, we can see from Figure 5(a) that the overall variance

converges in a few time slots. For sampling periods greater

than one, we observe that the predicted variance is much

higher than the corrected variance. Therefore, when we do

not take a measurement we get a high overall variance. This

is the reason that we see increased oscillating behavior as the

sampling period increases in figures 5(b) and 5(c).

Figure 6(a) represents the QoI averaged over the time

horizon for various values of the total energy. It shows that

as the sampling period increases, the average QoI becomes

worse. This is because the predicted variance is much higher

than the corrected variance. It follows from the figure that if

there were a choice of reducing energy consumption by either

increasing the sampling period or decreasing the energy per

slot, we should opt to lower the energy used per slot while
keeping the sampling period low, a combination that improves
QoI for the same average energy used.

Figure 6(b) shows the behavior of the QoI over time for

various sampling periods when the average energy over the

time horizon is fixed at 7. This figure is particularly interesting

because we observe that for the time slots at which we take

measurements, the QoI for a higher sampling period actually

performs better than the QoI for a lower sampling period.

This is because for a higher sampling period, we can use

higher energy while still maintaining the average energy at 7.

However, because the maximum total energy that can be used

by the system is fixed (18 in our case), we cannot arbitrarily

keep increasing the sampling period and still get improving

QoI. When the sampling period is 3, we use an energy of 21

(which is greater than the maximum total energy available in

the system). Therefore, when the sampling period increases

above 3, the variance will again start increasing. For instance,

we numerically observed that the variance obtained by the first

measurement for sampling period 3 was 5.5151 while that for

sampling period 4 was 5.5707. Hence we observe that, for a
given maximum energy emax, there is a critical sampling pe-
riod at which the QoI obtained during a sampling slot is min-
imum. In general, this critical period depends on the system
parameters, and in the current case equals to 	emax/eavg
.

Finally, we compute the ratio of the average QoI attained

until the current time slot to the average energy used until

the current time slot, and study how it behaves over the time

horizon (Figure 6(c)) when the average energy used over the

entire time horizon is 7. We observe that the high value of the

predicted variance again dictates the behavior of this metric.

D. QoI vs. Number of Sensors

In this experiment, we modify the original setup, and study

how the QoI varies with the number of sensors, the number

of targets, and the level of fusion, i.e., the maximum number

of sensors whose measurements were fused. We assume

that a sensor can track multiple targets simultaneously. Each

sensor uses a bank of Linear Kalman Filters to compute an

estimate of the predicted variance for each target (which

represents the QoI here). There are no energy constraints in

this experiment. The measurement error variance for a sensor

is chosen randomly between 0 and 6. The experiment is

repeated 300 times, and the results are averaged.

From Figure 7, we see that as the number of sensors

increases, the total variance decreases. This is because as

the number of sensors increases, on the average, there are

more sensors with lower measurement error variances to

track targets. However, note that the drop in variance is
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Figure 7. QoI vs. No. of Sensors

significantly lower when the number of sensors increases

from, say, 15 to 50 than from 5 to 15. Therefore, in many
applications, it may not be necessary to have a high density
of sensors to track a group of targets.

In Figure 7(a), we fix the number of targets to 5. We vary the

levels of fusion, i.e., the maximum number of sensors whose

information can be combined. As expected, we get a lower

variance with a higher level of fusion. For instance, we get a

lower variance when the level of fusion is 3 and there are 15

sensors in the system than when there is no fusion and there are

35 sensors in the system. Therefore, by performing fusion, for

the same QoI, we can deploy fewer sensors in the system. Fur-

ther, we can see that as the number of sensors that are allowed

to perform fusion increases, the drop in variance decreases.

For instance, there is a higher drop in variance between fusion

levels 2 and no fusion than between fusion levels 3 and 2. This

means that increasing the fusion level beyond a certain amount

in this case does not necessarily result in a significant improve-

ment in performance. In this experiment, we also studied the

computational complexity of our algorithm, and observed that

it was much lower in practice (using Matlab) compared to our

analytical results in Section IV. For instance, for fusion level

3, we observed a complexity of O(s1.52) while our analytical

result gives O(5s3) (for 5 targets, and no energy constraints).

The reason could be that while computing maximum or

minimum requires linear worst case complexity, it can be

computed in sub-linear time using appropriate data structures.

We now fix the level of fusion to 3, and vary the number of

targets in the system (Figure 7(b)). Clearly, as the number

of targets increase, the total variance increases. Notice the

difference in variance when there are 10 targets in the system,

and when there are 2 targets. While this difference is nearly 3

when there are 5 sensors, it is around 0.75 when there are 25

sensors, and 0.5 when there are 50 sensors. Thus, increasing

from 25 to 50 sensors only results in a drop of 0.25. This again

illustrates the fact that, depending on the system parameters,

it may not be necessary to have a high sensor density.

VI. CONCLUDING REMARKS

We studied the problem of assigning sensors for tracking

multiple targets simultaneously. We developed an integer

programming methodology for this problem. Compared to

existing work, our methodology can assign sensors to track

multiple targets, can be used for maximizing a general

function of the QoI when information from multiple sensors

are fused, and satisfies energy constraints. In the absence

of energy constraints, we showed that this problem can be

solved by finding an MWIS, which has a polynomial time

complexity because of the structure of the graph in which it is

found. We then extended these solutions using a Lagrangian

approach when there exist energy constraints.

We provided extensive numerical results applying our

methodology to a real multi-target tracking problem, and

gained insightful understanding on the convergence of our

algorithms, the performance of the QoI over a time horizon,

and the effects of varying the sampling period. Finally, we note

that while we have considered a specific application of sensor

networks (multi-target tracking), our methodology is general

enough to be applied to various sensor network operations

where fusion plays an important role.

VII. ACKNOWLEDGMENTS

The authors would like to thank Dr. Thyagaraju Damarla

and Dr. Ananthram Swami for insightful discussions.

REFERENCES

[1] C. Bisdikian, L. Kaplan, M. Srivastava, D. Thornley, D. Verma, and
R. Young, “Building principles for a quality of information specification
for sensor information,” in 12th International Conference on Information
Fusion (FUSION ’09), 2009.

[2] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Transactions on Signal Processing, 2009.

[3] A. S. Chhetri, D. Morrell, and A. Papandreou-Suppappola, “On the use
of binary programming for sensor scheduling,” IEEE Transactions on
Signal Processing, 2007.

[4] L. M. Kaplan, “Global node selection for localization in a distributed
sensor network,” IEEE Transactions on Aerospace and Electronic Sys-
tems, 2006.

[5] V. Isler, J. Spletzer, S. Khanna, and T. C. J., “Target tracking with
distributed sensors: the focus of attention problem,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2003.

[6] H. Rowaihy, M. P. Johnson, O. Liu, A. Bar-Noy, T. Brown, and T. La
Porta, “Sensor mission assignment in wireless sensor networks,” ACM
Transactions on Sensor Networks (TOSN), 2010.

[7] A. B. Poore and A. J. R. III, “A new lagrangian relaxation based
algorithm for a class of multidimensional assignment problems,” Com-
putational Optimization and Applications, 1997.

[8] D. J. Papageorgiou and M. R. Salpukas, “The maximum weight indepen-
dent set problem for data association in multiple hypothesis tracking,”
Optimization and Cooperative Control Strategies, Lecture Notes in
Computer Science, 2009.

[9] M. L. Fisher, “The lagrangian relaxation method for solving integer
programming problems,” INFORMS Management Science, 2004.

[10] A. Kulik and H. Shachnai, “On lagrangian relaxation and subset selec-
tion problems,” Approximation and Online Algorithms, Lecture Notes in
Computer Science, 2009.

[11] A. Berger, V. Bonifaci, F. Grandoni, and G. Schafer, “Budgeted matching
and budgeted matroid intersection via the gasoline puzzle,” Integer Pro-
gramming and Combinatorial Optimization, Lecture Notes in Computer
Science, 2008.

[12] S. Hariharan, C. Bisdikian, L. M. Kaplan, and T. Pham, “A flexible
solutions methodology for resource allocation with applications to sensor
network operations,” IBM Res. Rep. RC25115, Nov. 2010.

[13] R. Karp, “Reducibility among combinatorial problems,” Complexity of
Computer Communications, 1972.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1997.

[15] M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient
optimization,” Mathematical Programming, 1974.

[16] H. L. V. Trees, Detection, Estimation, and Modulation Theory, Part I.
John Wiley & Sons, 1968.

207


